
Under Construction:
Delphi Wizard Magic
by Bob Swart

This month I’m going to explain
the difference between a plain

Expert and a real Wizard. We’ll de-
velop a Wizard Form/Component
Template and end up by seeing
how to write a single Wizard DLL
Expert that can be installed into
both Borland C++ Builder and
Delphi – and I don’t mean single
source code, but single binary
code compatible!

Borland tools always used to
have Experts (such as the Target
Expert and Class Expert in Borland
C++, and the Component Expert
and Table Form Expert in Delphi),
while Symantec called them Assis-
tants and Microsoft named them
Wizards. Alas, Borland C++ Builder
and now Delphi 3 have introduced
us to the new official Borland termi-
nology: Wizards. Like it or not,
Microsoft does set the naming con-
ventions. Anyway, Delphi has a
TIExpert interface (no need to
change the class name as well and
break existing code) that we can
use to write Experts, ahem,
Wizards that is. We’ve seen the
techniques already in Issues 3, 7, 11
and 13, but let’s now explore the
true nature of Wizards and see how
we can build them ourselves.

Wizard GUI
Having a TIExpert dialog pop up in
the Delphi IDE is certainly nice, but
doesn’t constitute a real Wizard. If
we look at the Microsoft Windows
95 Add New Hardware Wizard
(Figures 1 and 2) we can identify
some issues and attributes that are
important when designing a
consistent Wizard interface.

First of all, the Wizard is a form
with a fixed size, comprising two
major parts: the bottom part with
the navigation buttons (Back, Next,
Cancel, sometimes Help, and Finish
at the end) and the upper part with
a bitmap on the left and the actual
Wizard contents on the right.

Looking closer we notice that the
bitmap which is displayed on the
left can be specific to the entire
Wizard or just to the current step.
The remainder of the form guides
the user. So a Wizard is not just
another data entry form, but a form
where we first give an explanation
of what kind of input we expect,
followed by the input control to
enter this value (for example a file
to be copied). This way we can see
the Wizard as an “Expert” that can
help and guide inexperienced
users (who may need to read the
cues), while experienced users can
just fill in the input controls and go
to the next page. All in all, a Wizard
is a well-established user interface
design element, open to all kinds
of uses.

MS Wizards
The Windows Interface Guidelines
for Software Design, published by

Microsoft Press (ISBN 1-55615-679-
0), has a lot of additional useful
information. According to this
book a Wizard is a series of pages
which help the user through a task.
The pages include controls to
gather input from the user which is
then used to complete the task.
Table 1 shows the definitions of the
standard command buttons which
appear at the bottom of the Wizard
form.

The book further advises us to
use the title bar text of the Wizard
form to identify the purpose of the
Wizard and optionally the purpose
of the specific step that is being
performed on the current page.

On the first page of the Wizard,
we should include a graphic in the
left side of the form to establish a
reference point. On the top right
portion of the Wizard window a
short paragraph welcomes the
user to the Wizard and explains

➤ Figure 1 ➤ Figure 2

Button Action

< Back Returns to the previous page (remove or disable button on the
first page)

Next > Moves to next page in the sequence, maintaining whatever
settings the user provide in previous pages

Finish Applies user-supplied or default settings from all pages and
completes the task

Cancel Discards any user-supplied settings, terminate the process
and closes the wizard window

➤ Table 1: Wizard button actions

May 1997 The Delphi Magazine 29

what it does. We can also include
controls for entering or editing in-
itial input to be used by the Wizard,
if there is sufficient space.

On subsequent pages, we can
continue to include a graphic for
consistency or, if space is critical,
use the entire width of the form for
displaying instructional text and
controls for user input. When using
graphics, we should make sure to
include pictures that help illustrate
the process. Also, we should in-
clude default values or settings for
all controls where possible.

We can include the Finish button
at any point that the Wizard can
complete the task, placed to the
right and adjacent to the Next but-
ton. This allows the user to step
through the entire Wizard or only
the page on which they wish to
provide input. Otherwise, if the
user needs to step through each
page of the Wizard, we should re-
place the Next button with the
Finish button on the last page of
the Wizard. Also on the last page of
the Wizard we must indicate to the
user that the Wizard is prepared to
complete the task and instruct the
user to click the Finish button.

In summary, we must design the
Wizard pages to be easy to under-
stand. It is important that users
immediately understand what a
Wizard is about so they don’t feel
like they have to read it very care-
fully to understand what they have
to answer. It is better to have a
greater number of simple pages
with few choices than a smaller
number of complex pages with too
many options or text.

TWizard
Now that we’ve learned how to

design a Wizard according to the
Microsoft guidelines, let’s find out
how much work it takes to actually
create something that looks and
acts like a Wizard. In order to do
that, lets take a form, set Width to
480, Height to 360, Scaled to False,
Position to poScreenCenter, Border-
Style to bsDialog and the Caption to
Dr.Bob’s Sample Wizard. Then, drop
a TBevel on the form, set Shape to
bsTopLine and Align to alBottom.
Now, drop three TButton controls
on the form just below the Bevel

and set the captions (from left to
right) to < &Back, &Next > and
Cancel. Note that we have to set the
form’s BorderStyle to something
other than bsSizeable or bsSize-
ToolWin (such as the bsDialog), oth-
erwise we would not be able to
drop anything below the Bevel line
– try it and you’ll see that the Bevel
shrinks down to below the buttons.
Why? I first suspected a bug in Del-
phi, but Danny Thorpe of Borland
R&D told me that this behaviour is
due to AutoScroll, which is enabed
by default on resizeable form styles
and disabled by default on fixed-
size form styles.

Anyway, make sure the Back and
Next buttons touch each other and
the Cancel one is a little to the right.
Ensure the Next button is the de-
fault button and set the ModalResult
property of the Cancel button to
mrCancel (so it cancels the Wizard
when clicked). Now, put a TImage on
the left part of the form just above
the Bevel and you have a Wizard
skeleton almost ready to use.

The final step involves going to
the Win 3.1 tab of the component
palette and dropping a NoteBook on
the form. Set the Align property to
alClient. The TImage will suddenly

disappear (behind the NoteBook)!
We can right click on the NoteBook
and choose Send to Back all we
want, the TImage will not reappear.
We need to put the TImage on a
Panel first (ie remove the TImage,
remove the Notebook, drop a Panel
on, drop the TImage on the Panel,
drop a NoteBook on, set Align to
alClient, perform Send to Back and
the Panel with the TImage will re-
appear). Now, we have a Panel with
a TImage that is placed on the form
and not on the NoteBook, so it will
show regardless of which NoteBook
page is the current ActivePage. This
technique can be used only if we
have a single image for the entire
Wizard. If we want to use different
images for different steps pages of
the Wizard then we should just
drop a TImage on every page of the
NoteBook that needs one. The latter
option requires more resources
and generates a bigger executable.
So, we now have our Wizard
Skeleton, as shown in Figure 3.

There’s one important last step,
which doesn’t have anything to do
with designing the Wizard but with
the flow of control: the Next and
Back buttons must share the same
ButtonStepClick event handler. But

➤ Figure 3

procedure TWizardForm.ButtonStepClick(Sender: TObject);
begin
 if Sender IS TButton then
 NoteBook.PageIndex := NoteBook.PageIndex + (Sender AS TButton).Tag
 else
 NoteBook.PageIndex := 0;
 ButtonBack.Enabled := NoteBook.PageIndex > 0; { first }
 if NoteBook.PageIndex < Pred(NoteBook.Pages.Count) then begin
 ButtonNext.Caption := ’&Next >’;
 ButtonNext.ModalResult := mrNone
 end else begin
 { Finish }
 ButtonNext.Caption := ’&Finish’;
 ButtonNext.ModalResult := mrOk
 end
end;

➤ Listing 1

30 The Delphi Magazine Issue 21

first, give the Tag property of the
Next button a value of 1, and the Tag
property of the Back button a value
of -1. If we click on the Next button,
we want to advance one page and
if we click on the Back button we
need to step back one page (or ad-
vance -1 page: the value of the Tag
property). The combined event
handler only needs to cast the
Sender to a TButton, check its Tag
property and do the required proc-
essing based on that. If the Sender
is not a TButton, then the NoteBook
would be set to display the first
page. This can be used for initiali-
sation in the FormShow event, for ex-
ample, where ButtonStepClick can
be called with the form itself or
witha nil argument. See Listing 1.

Note that the first NoteBook page
has PageIndex 0, while the last page
has PageIndex equal to NoteBook.-
Pages.Count minus one. If we’re on
the last page, the Next button
changes into the Finish button –
changing the caption to Finish and
ModalResult to mrOk. Of course, we
need to ensure that the Finish but-
ton changes back into the Next
button the user clicks Back.

This one event handler is usually
all the code you need! Sometimes,
the Next button can only be clicked
on after some action has been

performed (like a pre-condition).
You need to program that explic-
itly yourself. You can for example
set the Enabled property of the Next
button to False by default and only
enable it when the user has fulfilled
the requirements of the specific
Wizard page, which you can check
in the OnChange event handlers of
the controls and components on
that particular page.

The complete source code for
the TWizardForm, which is nothing
more than a Wizard template, is of
course on this month’s disk. An
example project to show the
Wizard in action is shown in Listing
2 (it compiles with all versions of
Delphi and Borland C++ Builder).
Given some more controls on the
Wizard pages, we could end up
with a sample Wizard like Figure 4.

Of course, version 3 of my collec-
tion of new Delphi and C++ Builder
Wizards will be using a similar
layout and Wizard style!

Delphi 3
Component Template
Delphi 3 has the new ability to cre-
ate compound components (also
called super components) on the
fly. Just select the components you
want to be included in the compo-
nent template and select Component

| Create Component Template. The re-
sult is a new pseudo-component
including all code for the event
handlers we’ve just written. A great
new way to add useful combina-
tions of components and proper-
ties to the component palette.
Especially in this case, where we
can save the entire Wizard form
we’ve built so far as one TWizard-
Template component, just like that!
See Figure 5.

Now let’s try something new.
Create a new form, but this time
resize it to be larger than our initial
Wizard Form of 480x360, say we
make the height about 480 as well.
Drop the new TWizardTemplate com-
ponent on the form and notice that
the buttons are suddenly children
of the Panel. You cannot move the
buttons back onto the Bevel, since
the Parent of each button has
become the Panel.

This is because when we drop
the component template on the
new (larger) form the components
get created in this order: the Bevel
and Panel before the buttons. But
when the Bevel and Panel are ad-
justed according to their Align
properties, the Panel is in the place
where the Bevel was, on the spot
where the buttons are about to be
created. And indeed the buttons
are created on top of the Panel in-
stead of on top of the Bevel. The
component template creator
couldn’t know that, it only reads
the order, type and properties of
the components that make up the
component template.

The fix is to put everything (ie
the entire previous TWizardTem-
plate) onto an extra Panel first: a
Panel component that has its Align
property set to alNone, so that the
other template sub-components
are created correctly. We can al-
ways set the Align property of the
“fathering” component to alClient,
if needed, after we’ve dropped it
onto a new form.

PlugIn Wizard Expert
Well, now that we’ve written the
Wizard interface form, we still need
the expert interface to the Delphi
(or C++ Builder) IDE. This is some-
thing we’ve done in the past, as I’ve
noted. This time, we only need a

➤ Figure 5

➤ Figure 4

program oz;
uses
 Controls, Dialogs, Forms,
 wizard in ’wizard.pas’;
begin
 with TWizardForm.Create(nil) do
 try
 ShowModal
 finally
 Free
 end
end.

➤ Listing 2

May 1997 The Delphi Magazine 31

simple esStandard type expert that
does nothing in its Execute method
but call the same code that we used
in the example project, except this
time we want to connect the Wiz-
ard to the name of the currently
loaded project. So, we call Tool-
Services.GetProjectName as well,
which returns a string containing
the name of the current project.
See Listing 3.

Note the special extra exports
entry of InitExpert as name
’INITEXPERT0017’ which is needed
for Delphi 3 since the internal ver-
sion number of Experts/Wizards
has changed from Delphi 2.01 and
C++ Builder. Some other things
have changed as well, but nothing
that we need to fear at this time.

The Wizard form, example pro-
ject and PlugIn expert DLL can be
compiled with all versions of Del-
phi and C++ Builder. If we want to
actually use the expert DLL then we
need to add a line to DELPHI.INI (in

the WINDOWS/SYSTEM directory):

WIZARD=C:\DELPHI\PLUGIN.DLL

where the path to PLUGIN.DLL
must be correct, of course. For the
32-bit tools we need to add a Key to
the registry at the Expert location
for each of the tools. The Key name
doesn’t matter, but the value must
be the exact path where the expert
DLL resides.

Borland C++ Builder
Now that we have a 32-bit expert
DLL for our Wizard, can we actually
use it with C++ Builder and Delphi
3? The PlugIn Wizard expert com-
piles with C++ Builder with no
problems and it runs fine as well.
The sizes of the two DLLs (one
compiled with Delphi 2.01 the
other with C++ Builder 1.0) are dif-
ferent, however, and this seems to
indicate that there is some differ-
ence in either the RTL/VCL or the
compiler of Delphi 2.01 and C++
Builder.

Which leaves the question: are
the expert DLLs created by the two
compilers binary compatible? That
is, can I use the PlugIn Wizard ex-
pert DLL compiled with Delphi 2.01
in C++ Builder, or vice versa? At
first sight, this appears to be so
(check out TRIPLEX.DLL by John
Howe, which is one DLL that is
binary compatible with Delphi 2,
Delphi 3 and C++ Builder).

However, there are some com-
patibility problems that can arise,
such as the use of ShareMem and
esStandard experts (that get in-
stalled on the Help menu). We can
prove this by trying to run the
PLUGIN.DLL compiled with Delphi
2.01 in the C++ Builder IDE: we get
access violations and This Program
Will Be Shut Down messages all
over the place. Not a pretty sight
and a darn puzzle if you don’t know
where to look for the cause...

ShareMem
Every expert DLL which communi-
cates with the Delphi or C++

library plugin;
uses
 {$IFDEF WIN32}{$H+} ShareMem, {$ENDIF}
 Wizard, ExptIntf, ToolIntf, VirtIntf, Forms,
 Dialogs, SysUtils;
procedure HandleException;
begin
 if Assigned(ToolServices) then
 ToolServices.RaiseException(ReleaseException)
end {HandleException};
Type
 TPlugInExpert = class(TIExpert)
 public
 { Expert Style }
 function GetStyle: TExpertStyle; override;
 { Expert Strings }
 function GetIDString: String; override;
 function GetName: String; override;
 {$IFDEF WIN32}
 function GetAuthor: String; override;
 {$ENDIF}
 function GetMenuText: String; override;
 function GetState: TExpertState; override;
 procedure Execute; override; { Launch the Expert }
 end {TPlugInExpert};
function TPlugInExpert.GetStyle: TExpertStyle;
begin
 Result := esStandard
end {GetStyle};
function TPlugInExpert.GetIDString: String;
begin
 Result := ’DrBob.TPlugInExpert’
end {GetIDString};
function TPlugInExpert.GetName: String;
begin
 Result := ’Dr.Bob’’s PlugIn Wizard Expert’
end {GetName};
{$IFDEF WIN32}
 function TPlugInExpert.GetAuthor: String;
 begin
 Result := ’Dr.Bob’
 end {GetAuthor};
{$ENDIF}
function TPlugInExpert.GetMenuText: String;
begin
 Result := ’No Project Wizard Available’;
 if Assigned(ToolServices) then
 with ToolServices do
 try
 if (GetUnitCount > 0) and

 (GetFormCount > 0) and
 (Length(GetProjectName) > 0) then
 Result := ’&Project Wizard for ’ +
 ExtractFileName(GetProjectName) + ’...’
 except
 HandleException
 end
end {GetMenuText};
function TPlugInExpert.GetState: TExpertState;
begin
 Result := [];
 if Assigned(ToolServices) then
 with ToolServices do
 try
 if (GetUnitCount > 0) and
 (GetFormCount > 0) and
 (Length(GetProjectName) > 0) then
 Result := [esEnabled]
 except
 HandleException
 end
end {GetState};
procedure TPlugInExpert.Execute;
begin
 if Assigned(ToolServices) then
 with ToolServices do
 try
 with TWizardForm.Create(nil) do
 try
 ShowModal
 finally
 Free
 end
 except
 HandleException
 end
end {Execute};
function InitExpert(Delphi: TIToolServices; RegisterProc:
 TExpertRegisterProc; var Terminate: TExpertTerminateProc):
 Boolean; {$IFDEF WIN32} stdcall; {$ELSE} export; {$ENDIF}
begin
 ExptIntf.ToolServices := Delphi; { Save! }
 if ToolServices <> nil then
 Application.Handle := ToolServices.GetParentHandle;
 Result := RegisterProc(TPlugInExpert.Create)
end {InitExpert};
exports
 InitExpert name ExpertEntryPoint resident,
 InitExpert name ’INITEXPERT0017’; { for Delphi 3 }
begin
end.

➤ Listing 3

32 The Delphi Magazine Issue 21

Builder IDE and wants to share
(long) strings must include Share-
Mem as the first unit in its interface
section, thereby making sure that
the code inside the ShareMem unit
shown in Listing 4 is the first to
execute.

SharedMemoryManager contains
three APIs (SysGetMem, SysFreeMem
and SysReallocMem) that are implic-
itly loaded from the Delphi Mem-
ory Manager DLL that serves as a
gateway between the Delphi IDE
and the expert DLL. Very conven-
ient, and if you ever write a DLL
expert that causes a lot of access
violations when talking to Tool-
Services, for example, then the
presence or lack of the ShareMem
unit should be the first thing to
check.

ShareMem <> ShareMem
The compatibility problem be-
tween Delphi 2.x and C++ Builder is
caused by the fact that their Share-
Mems are not the same. The Delphi
2.x version contains the import
declarations for the DELPHIMM.DLL
Delphi memory manager DLL,
shown in Listing 5.

The C++ Builder version is some-
what different and is based on
BCBMM.DLL not DELPHIMM.DLL, as
shown in Listing 6. The first three
APIs have different (mangled?)
names and there’s a new API called
DumpBlocks.

So, if we compile an expert DLL
that uses ShareMem with Delphi 2.x
it probably won’t run with C++
Builder and vice versa. Some
things may work fine (esAddIn
experts, for example) but our
example doesn’t!

New ShareMem
Since I would very much prefer a
single binary copy of my expert
DLL containing a collection of
Wizards, I had to find a way to com-
bine these two versions of Share-
Mem. Not loading the memory
management DLL implicitly, like
the original ShareMem, but loading it
explicitly and first trying to find out
which IDE is running: Delphi or C++
Builder.

Finding out which IDE is running
can be approached in many differ-
ent ways. One is to call the Tool-
Services API GetBaseRegistryKey

and see if the string contains the
substring Delphi or C++. We can
even try to obtain the version
number of the tool once we’re in-
side the registry. Unfortunately, we
can’t call this API since it returns a
long string, and we need to install
the new memory manager before
we can access long strings...

Another way is to do a FindWindow
for a specific Window title, like
Delphi 2.0 or C++Builder. Unfortu-
nately, this technique won’t work if
both tools are running, so we have
to skip that one too.

A final way I could think of was to
check the value of ParamStr(0) from
within the expert DLL. This string
should hold the value of the calling
application, just like the old DOS
CommandLine string. This technique
has just one flaw: ParamStr(0) re-
turns... a long string, and we can’t
do anything with long strings be-
fore the new memory manager is
installed (otherwise we’ll get a lot
of run-time error 204 - invalid pointer
operations messages when we fi-
nally install the new memory man-
ager, resulting in a fatal error for
our expert DLL which will then ter-
minate nicely). Fortunately, there’s
a nice API hidden in KERNEL32.DLL
that returns the entire command
line as a PChar string, one that we
are allowed to handle before in-
stalling the memory manager: Get-
CommandLineA. All we need to do is
find out whether or not the charac-
ters B, C and B occur next to each
other in this string (since C++
Builder is BCB.EXE). This tech-
nique works, resulting in a new
ShareMem unit that is compatible
with both Delphi 2.x and C++
Builder (and probably Delphi 3,
though I don’t have the release ver-
sion of Delphi 3 at the time of
writing). See Listing 7.

Note that this unit also contains
a Boolean variable Delphi in its
interface section that you can use
inside your expert DLLs to identify
whether or not your Wizards
should behave inside a Delphi or
C++ Builder environment.

Results
We’ve seen what Wizards are,
examined some guidelines when
designing their user interfaces, and

const
 SharedMemoryManager: TMemoryManager = (
 GetMem: SysGetMem;
 FreeMem: SysFreeMem;
 ReallocMem: SysReallocMem);
initialization
 SetMemoryManager(SharedMemoryManager);
end.

➤ Listing 4

const
 DelphiMM = ’delphimm.dll’;
function SysGetMem(Size: Integer): Pointer; external DelphiMM;
function SysFreeMem(P: Pointer): Integer; external DelphiMM;
function SysReallocMem(P: Pointer; Size: Integer): Pointer; external DelphiMM;
function GetHeapStatus: THeapStatus; external DelphiMM;
function GetAllocMemCount: Integer; external DelphiMM;
function GetAllocMemSize: Integer; external DelphiMM;

➤ Listing 5

const
 DelphiMM = ’bcbmm.dll’;
function SysGetMem(Size: Integer): Pointer; external DelphiMM
 name ’@System@SysGetMem$qqri’;
function SysFreeMem(P: Pointer): Integer; external DelphiMM
 name ’@System@SysFreeMem$qqrpv’;
function SysReallocMem(P: Pointer; Size: Integer): Pointer; external DelphiMM
 name ’@System@SysReallocMem$qqrpvi’;
function GetHeapStatus: THeapStatus; external DelphiMM;
function GetAllocMemCount: Integer; external DelphiMM;
function GetAllocMemSize: Integer; external DelphiMM;
procedure DumpBlocks; external DelphiMM;

➤ Listing 6

May 1997 The Delphi Magazine 33

how to implement them as Delphi
and C++ Builder Wizard DLL ex-
perts. One expert DLL, multiple
environments. Sounds like Magic,
but that’s what Wizards are for.
And remember it takes a TIExpert
to produce one...

Next Time, Dr.Bob Says...
Next time, we’ll be looking into a
fresh new Delphi 3 topic: how to
turn our Wizard into an ActiveX, or
better yet, into an ActiveForm, and
then how to deploy it on the
internet and/or an intranet.

Stay tuned!

Bob Swart (home.pi.net/~drbob/)
is a professional knowledge engi-
neer and technical consultant
using Delphi and C++ Builder for
Bolesian (www.bolesian.com), a
freelance technical author and
co-author of The Revolutionary
Guide to Delphi 2. Bob is now
co-working on Delphi Internet
Solutions, a new book about Del-
phi and the internet/intranet. In
his spare time, Bob likes to watch
videos of Star Trek Voyager and
Deep Space Nine with his 3 year
old son Erik Mark Pascal and his 6
month old daughter Natasha
Louise Delphine.

unit ShareMem;
{ (c) 1997 by Bob Swart (aka Dr.Bob, http://home.pi.net/~drbob/ }
interface
const
 Delphi: Boolean = True; { can be used outside the unit as well }
 SysGetMem: function(Size: Integer): Pointer = nil;
 SysFreeMem: function(P: Pointer): Integer = nil;
 SysReallocMem: function(P: Pointer; Size: Integer): Pointer = nil;
 GetHeapStatus: function: THeapStatus = nil;
 GetAllocMemCount: function: Integer = nil;
 GetAllocMemSize: function: Integer = nil;
 DumpBlocks: procedure = nil;
implementation
uses Windows;
const
 Handle: THandle = 0;
 SharedMemoryManager: TMemoryManager = (
 GetMem: nil;
 FreeMem: nil;
 ReallocMem: nil);
function GetCommandLine: PChar; stdcall;
 external ’kernel32.dll’ name ’GetCommandLineA’;
var P: PChar;
 i: Integer;
initialization
 P := GetCommandLine;
 i := 0;
 repeat
 Inc(i)
 until (P[i] = #0)
 or ((P[i] = ’B’) and (P[i+1] = ’C’) and (P[i+2] = ’B’));
 Delphi := P[i] = #0;
 if not Delphi then begin
 Handle := LoadLibrary(’BCBMM.DLL’);
 if Handle = 0 then
 MessageBox(HWnd(0),’Error: could not load BCBMM.DLL’,
 nil,MB_OK or MB_ICONHAND);
 @DumpBlocks := GetProcAddress(Handle, ’DumpBlocks’);
 @SysGetMem := GetProcAddress(Handle, ’@System@SysGetMem$qqri’);
 @SysFreeMem := GetProcAddress(Handle, ’@System@SysFreeMem$qqrpv’);
 @SysReallocMem := GetProcAddress(Handle, ’@System@SysReallocMem$qqrpvi’);
 end else begin
 { Delphi }
 Handle := LoadLibrary(’DELPHIMM.DLL’);
 if Handle = 0 then
 MessageBox(HWnd(0),’Error: could not load DELPHIMM.DLL’,
 nil,MB_OK or MB_ICONHAND);
 @SysGetMem := GetProcAddress(Handle, ’SysGetMem’);
 @SysFreeMem := GetProcAddress(Handle, ’SysFreeMem’);
 @SysReallocMem := GetProcAddress(Handle, ’SysReallocMem’);
 end;
 @GetHeapStatus := GetProcAddress(Handle, ’GetHeapStatus’);
 @GetAllocMemCount := GetProcAddress(Handle, ’GetAllocMemCount’);
 @GetAllocMemSize := GetProcAddress(Handle, ’GetAllocMemSize’);
 SharedMemoryManager.GetMem := @SysGetMem;
 SharedMemoryManager.FreeMem := @SysFreeMem;
 SharedMemoryManager.ReallocMem := @SysReallocMem;
 SetMemoryManager(SharedMemoryManager);
finalization
 FreeLibrary(Handle)
end.

➤ Listing 7

Threads Whoops...
Thanks very much to Luca
Guzzon and Berend de Boer for
noticing an oversight in last
month’s Under Construction
column. In TFirstThread.Create
in the source file THREAD1.PAS
and also in the method
TSpagettiThread.Create in the
source file SPAGETTI.PAS I
placed the
inherited Create(False);

statement at the beginning of
the method.

This is unfortunately wrong:
it has the effect of starting the
thread immediately without
the parameters being set. The
solution is to move the
inherited Create(False);

statement to the last line of the
two constructors.

Sorry folks!

34 The Delphi Magazine Issue 21

	Wizard GUI
	MS Wizards
	TWizard
	Delphi 3 Component Template
	PlugIn Wizard Expert
	Borland C++ Builder
	ShareMem
	ShareMem <> ShareMem
	New ShareMem
	Results
	Next Time, Dr.Bob Says...
	Threads Whoops...

